4.9t^2+4.96t-2.3=0

Simple and best practice solution for 4.9t^2+4.96t-2.3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.9t^2+4.96t-2.3=0 equation:



4.9t^2+4.96t-2.3=0
a = 4.9; b = 4.96; c = -2.3;
Δ = b2-4ac
Δ = 4.962-4·4.9·(-2.3)
Δ = 69.6816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.96)-\sqrt{69.6816}}{2*4.9}=\frac{-4.96-\sqrt{69.6816}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.96)+\sqrt{69.6816}}{2*4.9}=\frac{-4.96+\sqrt{69.6816}}{9.8} $

See similar equations:

| 180=65+(x+72) | | -2/3×(x-3)+1/9x+2=(9x-27)÷3+9/4×(x-4) | | 3x+2=-(x-60 | | -37+x=-2 | | 43+3.5+2x+6=45.5+3.5+x | | 4x+25+6x+20=105 | | 5a+2a=a-9 | | 2a=a-4 | | -2+3x=-7x+38 | | 40=2×^3×y | | 2x+15+x=-x+7+9 | | -(x+3.5)+x=2.5 | | -6-2x=x-12 | | 4*3=p+8 | | 2(2x−1)=(x+1)+3(x−1)​ | | 1x+15=14 | | x^2(3.14/3)+1=0 | | 9x-21=27+x | | 7-3x=7x-2(3-x) | | 21-9=27+x | | 2x+60=9x-17 | | -2(2x+3)=-4(x+10)-2x | | 4x+1=-2+x | | 2.6+0.9p=−p−2.1 | | r5-50=121 | | r5-50=`121 | | 21-9x=27+x | | 3x+9=22-4x | | -8q-10=-10-8q | | 40=2/3×y | | 6x+2=-18+4x | | -g=10+9g |

Equations solver categories